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• Is the Earth's ozone layer 
recovering?
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TOMS - August 31, 2003
Orange/Yellow 

indicates higher 
ozone levels.  

Blue colors indicate 
low ozone values

Dark color over pole shows 
the extent of polar night, no 

ozone observations

Antarctic ozone 
hole is defined 
as the region 

covered by low 
ozone values 
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Cl reacts with CH4 or NO2
to form non-reactive HCl or 

ClONO2
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HCl reacts wtih ClONO2 on the surfaces 
of PSCs, leading to massive ozone loss: 

Antarctic ozone hole
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Some Absorbing Gases in the 
Earth’s Atmosphere
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H2O is the dominant 
greenhouse gas in our 

atmosphere
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Ozone and climate change
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depletion
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increase

See “Climate Change 2001: The Scientific Basis”

Ozone change is not a primary cause of climate change.  
1) Ozone depleting substances contribute to climate change. 
2) Ozone changes causes a slight climate response. 
3) Climate change may seriously impact ozone levels.
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January ClimatologyJanuary Climatology

Temperatures in color
Wind speed contours in white

Convection 
from surface 

deposits air in 
the upper 

troposphere 
(mainly around 

14 km)
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Brewer, A.W., Evidence for a world circulation provided by the 
measurements of helium and water vapour distribution in the 

stratosphere, Q. J. R. Meteorol. Soc., 1949.
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Temperatures in color
Wind speed contours in white

Isentropic as black dashed lines

Water in the 
stratosphere 
~ 3.85 ppmv
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upper 
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10-20 ppmv
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tropical tropopause layer?
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Isentropic as black dashed lines



If we don’t understand the 
physics of H2O drying in the 
UT/LS, then we can’t predict 
how climate change impacts 

on H2O
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Observations in the tropicsObservations in the tropics

Temperatures in color
Wind speed contours in white

Humidity from 
sondes is good 

to 300 hPa
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in the tropical upper troposphere
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January upper troposphere H2OJanuary upper troposphere H2O

High water 
concentrations found at 
ITCZ from convective 
detrainment
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Lower water found in 
Eastern Pacific as a result 
of cross Pacific Walter 
circulation: few direct 
observations of upper 
tropospheric water
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January lower stratosphere H2OJanuary lower stratosphere H2O
Water at approximately 18 km (68 hPa)
Orange-Red: high water
Green: low water
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Low water found north of 
equator possibly as a 
result of freeze drying of 
air during lofting from 
troposphere
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What is the physics behind the freeze drying of air?
How will water change in the upper troposphere in a 
future climate world?
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ObservationsObservations
• Observations are key to understanding the 

science of ozone loss, air quality, and climate 
change

• NASA’s observational strategy is built upon 
global satellite observations, aircraft 
measurements, and ground observations 
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Aura

• High Resolution Dynamics Limb Sounder (HIRDLS:USA/UK)
– Measures IR limb emission of stratospheric and upper 

tropospheric trace gases and aerosols

• Microwave Limb Sounder (MLS:USA)
– Measures microwave limb emission of ozone destroying 

chemicals and upper tropospheric trace gases

• Tropospheric Emission Spectrometer (TES: USA)
– Down looking and limb looking measurements of air pollution

• Ozone Monitoring Instrument (OMI: Netherlands/Finland)
– Measures column ozone and aerosols - continues global ozone 

record of TOMS

MLS

TES nadirOMI

HIRDLS Direction of motion

Atmospheric Chemistry and Climate

TES limb



AVE PlatformAVE Platform

WB-57FWB-57F
Payload: 6000 lbs. 4 pallets, 2 pods, wing hatches
Range: 2400 km
Ceiling: 19 km
Alt. range: 2-62 kft (~ 1-19 km)
Airspeed: 185 m/s (@19 km)
Endurance: 6.5 hours
Crew: Pilot & payload operator
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July 7, 2002July 7, 2002

Developing Cb near Key West, Fla.
Photo taken from 60 kft
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Shelley Baccus (WB-57F backseater)Shelley Baccus (WB-57F backseater)



Aura and Validation Campaign TimelineAura and Validation Campaign Timeline
Commissioning Commissioning 

PhasePhase Validation and Operations PhaseValidation and Operations Phase
Aura

AuraAura
LaunchLaunch

Jan. 04Jan. 04 –– prepre--AVE (Costa Rica)AVE (Costa Rica)
Jul. 04 Jul. 04 –– INTEXINTEX--NENE--E, AVE (Ellington)E, AVE (Ellington)
Oct. 04Oct. 04 –– AVE (Ellington)AVE (Ellington)
Jan. 05 Jan. 05 –– AVE AVE -- polar (Bangor)polar (Bangor)
Jul. 05 Jul. 05 –– TC4 summer (Costa Rica) + CAMEX5 + TEX/MEX (UAV?)TC4 summer (Costa Rica) + CAMEX5 + TEX/MEX (UAV?)
Jan. 06 Jan. 06 –– AVE/TC4 (Darwin) + DOEAVE/TC4 (Darwin) + DOE--IOP (UAV?)IOP (UAV?)
Apr. 06 Apr. 06 –– INTEXINTEX--NANA--W, AVE (Ellington) (UAV?)W, AVE (Ellington) (UAV?)
Sep. 06 Sep. 06 –– AVE (Costa Rica) (UAV?)AVE (Costa Rica) (UAV?)
Jan. 07 Jan. 07 –– TC4 winter (Guam) (UAV?)TC4 winter (Guam) (UAV?)
Jun. 07Jun. 07 –– AVE (TBD) (UAV?)AVE (TBD) (UAV?)
Nov. 07Nov. 07 –– AVE (TBD) (UAV?)AVE (TBD) (UAV?)
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January 2004
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ObjectivesObjectives

• Tests concepts for using high quality in-situ 
and remote data sets for Aura validation

• Develop liason interactions with collaborating 
teams

• Make observations of the influx of material from 
the tropical troposphere into the stratosphere

• Characterize the Tropical Tropopause Layer 
(TTL) including relationships of water vapor, 
CO2, ozone pre-cursors and ozone production 

• Explore seasonal characteristics of strat-trop 
exchange.
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AVE-Jan 2004 Management

Don Anderson Program Manager NASA HQ
Mike Kurylo Program Manager NASA HQ
Phil DeCola Program Manager NASA HQ
Paul Newman Co-Project Scientist NASA GSFC

Project Actor
David Fahey Co-Project Scientist NOAA AL
Marty Ross Payload Manager Aerospace Corp
Mike Gaunce Project Manager NASA Ames
Michael Craig Co-Project Manager NASA Ames
Kathy Thompson Project Coordinator CSC
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WB-57F Nose & Wing PodsWB-57F Nose & Wing Pods



WB-57F PalletsWB-57F Pallets



Pre-AVE January 2004 payloadPre-AVE January 2004 payload

Left Wing Pod
MTP, H2O 
vapor, 
CAPS

Right Wing Pod
ALIAS

Right Wing Pod
ALIAS

Right Wing Hatches
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Left Wing Hatches
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CO2, total H2O
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CO2, total H2O

Pallet 2
Argus, FCAS, MACS, NMASS
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Pallet 3
CIMS (HCl, HNO3), 
CH4, O3

Pallet 3
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CH4, O3

Pallet 4
WAS
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Aft Transition
PANTHER

Aft Transition
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Upper Equip BayUpper Equip Bay

Left Wing Pod
MTP, H2O 
vapor, 
CAPS

Nose
PALMS, PT
Nose
PALMS, PT
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ScheduleSchedule
Jan. 12 (Mo.) - 8AM - begin integration for wing pods 

and wing hatch instruments
Jan. 13 (Tu.) - 8AM - begin integration for fuselage
Jan. 16 (Fr.) - Test flight (5-6 hours)
Jan. 18 (Su.) - 1st science flight going north (5-6 hours)
Jan. 19 (Mo.)- Aura Liason visit to view operations
Jan. 20 (Tu.) - 2nd science flight going north (5-6 

hours)
Jan. 24 (Sa.) - Flight to San Jose, CR (5-6 hours)
Jan. 27 (Tu.) - 1st Equator flight (5-6 hours)
Jan. 30 (Fr.) - 2nd Equator flight (5-6 hours)
Feb. 01 (Su.)- Return to Ellington (5-6 hours)

Total hours: 7 Flights, 35-42 hours,  21 day deployment.
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Pre-AVE summaryPre-AVE summary
• Platform: NASA WB-57F
• Pre-AVE flight series in Jan 2004

• 3 mid-latitude flights
• 2 transit flights
• 2 tropical flights (Jan. 24-Feb. 1)

• Objectives:
• Observed transport from tropical 

troposphere into the stratosphere
• Characterize the Tropical Tropopause 

Layer (TTL) 
• Explore seasonal characteristics of strat-

trop exchange.
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